FREQUENTLY ASKED QUESTIONS

 

 

 

The present document is illustrated with some net-references found in the literature.

For an A4(.pdf) reference, its page number might follow a letter attributed to this reference.

Webpage reference got only a letter  :

 

  1. www.hse.gov.uk/research/crr_pdf/2002/crr02411.pdf   
  2. www.hse.gov.uk/research/crr_pdf/2002/crr02451.pdf
  3. www.hse.gov.uk/research/hsl_pdf/2003/hsl03-09.pdf
  4. www.hse.gov.uk/research/rrpdf/rr258.pdf
  5. www.dodsbir.net/sitis/view_pdf.asp?id=A0245%20Ref4.pdf
  6. http://upetd.up.ac.za/thesis/available/etd-01112005-124913/unrestricted/00dissertation.pdf
  7. http://pastel.paristech.org/bib/archive/00001306/01/These_Campana.pdf
  8. http://srvsofcot.sofcot.com.fr/Apcort/conf/97_62/art08/art08.htm   F. Lavaste. ENSAM Biomecanic Lab., Paris 1997
  9. www.maitrise-orthop.com/corpusmaitri/orthopaedic/cd_horizon_actu/cd_horizon.shtml
  10. www.vertebre.com/index.php3%3Frub%3Dinterview%26id%3D8    Revel MD, France
  11. www.freepatentsonline.com/4967985.pdf    Deakin      BRITISH AEROSPACE  PLC      1990
  12. www.freepatentsonline.com/4667904.pdf        Herndon          BOEING   CIE       1987
  13. www.freepatentsonline.com/4664341.pdf          Cummings        ROCKWELL    1985
  14. www.freepatentsonline.com/4477041.pdf                  Dunne  Michael      1984
  15. www.iiimef.usmc.mil/medical/FMF/FMFE/FMFEref/fs_man/CHAPTER 2.html
  16. www.brooksidepress.org/Products/OperationalMedicine/DATA/operationalmed/Manuals/FlightSurgeonManual/FlightSurgeonsManual.pdf
  17. www.kcl.ac.uk/depsta/biomedical/physiology/jp390/2005/Acceleration_Physiology.pdf  RAF
  18. http://yarchive.net/space/science/g_tolerance.html
  19. www.medind.nic.in/iab/t02/i2/iabt02i2p81.pdf      
  20. www.brooks.af.mil/web/fp/apnewspub.pdf     
  21. www.flightmed.com.au/IAW2001Newsletter.PDF
  22. Les sièges éjectables Martin-Baker, par G.P. Green de la Martin-Baker Aircraft Company, Ltd.    INTERAVIA 2/1962, pages 192-193.

 

 

 

 

      QUESTIONS

 
 

I.          Could our system realize savings of life, and interest Air Forces & Civil matters/means? Regarding the 10% ejection lethality rate & the Rockwell crash rapport information (m)?

 

II.         Is spinal injury still today a high preoccupation after the 1990s enhancements? Notably in the Navy & for women crew (after B. Shinder)?

 

III.       In what pre-tension &tension is an advantage facing the current forced compression distribution  & facing GLOC?    (Over 1700 pounds)

 

IV.       What loads (maximum) could support the chest & armpits (discharge & fatigue counter measure)?

 

V.        May our system be active partially at parachute opening shock?

 

VI.       How retention for loading above 1G can be expected/forwarded & be positively comforted (After Madsen p. 3, After (f) thesis)?

 

VII.      If one can really want it, can engineering be found/developed to permit additional space at the buttock rotation?

 

VIII.     In what particular phase (how) can the system act during the push-pull effect?

 

IX.       Is the head of a tall pilot so much higher that our retention can’t be placed for their shoulders?

 

IX bis.   Might dynamic overshoot be reduced at catapult ignition?

               

X.        Could our design/system be complementary and act together with the current one?

           

XI.       Is a blanket approach, from a white paper constructive?  (Also see question VI, last terms)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      GLOBAL RESPONSE  IN REGARD OF ALL QUESTIONS REFERENCED IN MARGIN, & IN REGARD OF THE WEB LITTERATURE, AS SHOWN IN 1ST PAGE

 

 

 

ABSTRACT

 

 

INTERIM TEXT BEFORE COMPLETE TRANSLATION AND DEFINITIVE VERSION

SUBJECT TO EVOLUTION

 

 

 

III.

 

1) LA PRE-COMPRESSION PEUT S’OBTENIR :

 

1.1) Par le harnais de torse actuel. Il ne peut y avoir de (re)distribution des forces en soulagement notamment parce que le harnais est aussi solidaire du support fessier. La pre-compression conduit à une concentration supplémentaire :

Ancré verticalement en bas à l’avant du siège et rétracté derrière les épaules dans le plan horizontal [avec des tolérances -5°, +30°] ce harnais transmet, dans ces deux attaches, deux forces dont la résultante dirige le buste vers le bas et l’arrière.

Si une faible partie du poids du buste est transférée par friction au dossier, la composante verticale occasionne, elle, une surcharge vertébrale d’autant plus forte que diminue l’angle de tolérance et, pour un angle donné, d’autant plus forte que le buste est en flexion (pilote non adossé, de son fait, ou suite à une résistance à l’avancement, par impact).

Initialement la composante horizontale naît d’une force non dosable (o, L6).

Si la pre-compression « soude » les vertèbres et le fessier au support, option contre l’overshoot (l’ensemble veut atteindre plus rapidement la vitesse du support quand elle n’est pas encore trop grande), elle augmente par contre la compression/fragilité sur les lombaires [et sur les facettes qui en supportent 10% si les disques sont sains ( J )] d’un supplément non dosable (o, L6) [rétractation par ’’inertial reel’’] et propre à chaque composante verticale suivant l’angle propre du vecteur rétraction, pour chaque hauteur de buste.

 

(o) “During ejection, a cartridge is fired to retract the shoulder harness”        Rappelons encore que cette configuration avec composante sub-horizontale du restraint, en deçà des [–5°], est fortement déconseillée en cas d’impact combinant les axes verticaux et horizontaux..

(L6)           Known torso restraint retraction systems do not fulfil this need because they are not adapted to respond to in flight accelerations conditions.”(1987)

 

Considérons que par principe cette rétraction est permanente jusqu’à la séparation du siège/pilote et que cette force reste constante appliquée au contact du buste quelque soit son affaissement, force possiblement aidée par des fonctions airbag entre les sangles et le harnais :

Si cette pre-compression est de 50 à 100 pounds (e76), cela peut représenter 5 à 10% de la charge en plus à l’éjection (moyenne 15G). On rajoute du poids aux G sur les lombaires, c’est dangereux.

 

1.2) En tirant la poignée basse d’éjection (entre les jambes). 45 pounds minimum est requis pour la sortir du logement mais les études prouvent que jusqu’en butée ou en butée, le pilote dans l’urgence ne dose pas toujours exactement son effort et peut appliquer considérablement plus de forces (crispation en butée) en prenant appui avec les avant-bras sur les jambes et avec les jambes/cuisses sur le support : jusqu’à 300 pounds (= limite technique/instrumentale lors des essais/ simulations)*.

 

(*) www.google.com/search?q=cache:8_05xjugOjoJ:iac.dtic.mil/hsiac/GW-docs/gw_ix_2.pdf+handle+ejection+pull&hl=fr&ct=clnk&cd=13    (En cache.  Pdf  non dispo)

 

Là encore la pre-compression est inconstante et peut dépasser son cadre opératoire : la charge augmente de 5 à 25% sur les lombaires. Il y a distribution des forces dans le sens d’une concentration, cumulative avec le harnais actuel s’il agit sub-horizontalement.

 

 

 

 

 

VI.

XI.

2) EN FAVEUR DE LA PRE-TENSION ENTRAINANT LA RETENUE

BLANKET APPROACH

 

2.1) Voir les effets bénéfiques du recours à la ’’face curtain’’ dans les notes jointes (see our website) : 60 pounds et plus, du poids de la ceinture des épaules sont absorbés par ce point d’ancrage.

IX bis.

 

L’overshoot est diminué d’autant que les lombaires supportent moins de concentrations : 10% (ou plus de 10%) en moins sur les lombaires.

Cela fait [10%] + [10% pre-compression (poignée basse)] soit 20% en moins par rapport à la charge sur les lombaires avec pre-compression. Ce recours à la face curtain démontre qu’une pre-tension est donc préférable.

D’autant plus que l’on flirt avec les limites de la résistance spinale en compression (a27).

      (a27-f°20) “crushing resistance of the spiral column”

 

II.

XI.

 

2.2) Voir les mentions plébiscitant l’allègement de la compression spinale (à l’éjection) dans les documents du spécialiste US des sièges ejectables, Goodrich et en (f, q).

[(f) prone position with restraint harness + frontal impact] = [our system sitting posture + Gz impact]

(q) « Future G protection: In order to extend much beyond +9 to +12 Gz for prolonged periods, alternative strategies are required. »

 

II.

 

__« anti-compression recherché »  www.freepatentsonline.com/6422512.pdf  Colonne 6, lignes 17-28.

  

__”spinal compression may be prevented”  www.freepatentsonline.com/6422513.pdf   Abstract lignes 5-6,  et colonne 4, lignes 51-54.

III.

IV.

VI.

 

 

__ ”…pelvic restraint in the prone position would provide the advantage of tension rather than compression loading of the lumbar spine…”  (f56)

 

III.

IV.

VI.

 

__”This led to the conclusion that sufficient pelvic restraint was vital to avoid high compression loads to the spine in a frontal impact scenario.” (f82)  

ET A CONCLUSION QUE CECI EST TRANSPOSABLE, A L’IMPACT VERTICAL, AU SOULAGEMENT DE LA COMPRESSION LOMBAIRE SOUS LE POIDS DU BUSTE, EN MODE ASSIS NORMAL.

 

III.

VI.

 

 __”The hip belts did not restraint the pelvis from displacing forward because the attachment angle was of such nature that the belts were not elongated but only rotated around the seat attachment points by the pull of the pelvis.”  (f82)  

TOUT COMME LE HARNAIS ACTUEL NE RETIENT PAS LE THORAX DE DESCENDRE, SES SANGLES D’EPAULES, N’ETIRENT PAS AXIALEMENT LA COLONNE ET FONT UNE ROTATION AUTOUR DE LEUR FIXATION, ENTRAINEES PAR LE POIDS APPARENT DU THORAX

 

III.

VI.

 

__”From this exercise it was however realised that there would exist a combination of belt slack & pretention between the pelvic restraints &shoulder straps that would result in an acceptable spinal loading scenario between the extreme tension &compression cases… In the 3rd restraint concept in Figure 4.24, page 77” (f82)

“best results were obtained with restraint concept 3 (test 2 with frontal impact)” (f96)

[Figure E4  :  Prone concept 3,  +7000N tension (green curve) –5000N compression] (f136)

 

III.

VI.

 

__”Conclusion. In comparison with the normal seated &supine seated positions a pilot in the prone position would be exposed to much lower spinal compression forces due to the orientation of the body with respect to a crash load with both vertical &horizontal components… spinal compression during frontal impact case could be limited if adequate pelvic restraint was provided.” (f94)

 

III.

VI.

 

__”Conclusion. Although compression of he spine in the conventional pilot position can be limited by following  the recommended shoulder harness &safety belt installations, it will always be present due to the resultant force caused by the angle of the shoulder straps & the seat structure below the pilot.” (f85).   See JAR 23 562 spec.  (f123-124)

Compression of the spinal column by… shoulder harnesses should be avoided.”  (f116)

 

 

2.3) Il est clairement dit et répété dans nos courriers :

 

__Espace nominal maintenu entre les vertèbres  « as in supine position » (cad 0G) « par exemple ».   (o) « The erect or hyper extended posture is ideal for ejections  »

(ou ’’as in sitting posture’’ soit 1G). Avec comme corollaire ce qui suit.

 

IV.

 

__“The shoulders harness straps could just support the apparent chest weight” (0G)

“The buttock supports the apparent pelvis weight”  (0G).

La colonne, sa souplesse sont donc préservées.

 

Par le soulagement du poids du thorax, l’avantage immédiat est de préserver la jonction vertébrale très sensible entre la base du thorax et au sommet des lombaires* (o,p,f)

 

I.

II.

 

(*) vnh.org/FSManual/02/03ImpactAcceleration.html  “Spinal impact associated with ejection may result in vertebral compression fractures. The most common fracture sites are (thoracic) T-12 and (lumbar) L-1”

(o) “One of the most vulnerable sites for injury of the spinal column is the region around the eleventh and twelfth thoracic vertebrae (T11-T12). From the eighth thoracic to the first lumbar vertebrae is the region of greatest frequency”      

(p915) cap 22, f°39 :  “T10 to L2”

(f30)          ”upper lumbar &lower thoracic segments”

 

VI.

 

Sur ce point focal notamment, la pre-tension (avant top fusée) et la retenue (pendant la fusée) s’imposent donc sur la pre-compression et la compression sur les mêmes plages.

VII.

IX.

Dans ces conditions il y a tension/hyperextension (mise en traction subverticale) de la colonne mais par rapport à sa position compressée dans la technique antérieure. L’hyperextension est un sens d’action de la retenue par rapport à la non retenue quand les épaules se trouvent plus bas.

=> Le pilote n’est pas plus haut (que au neutre : ’’sitting’’ sous 1G) ou à peine plus haut ( ’’as in supine position’’ 0G, écart négligeable). Comme le support peut s’affaisser, il peut même être légèrement plus bas (travail résistant des sangles). Cet espace d’affaissement devrait être minime, le pilote conservant sa grandeur de buste comme en position neutre (sitting ou supine).

=> facteur avantageux pour l’adaptation (en encombrement) à tous les cockpits.

 

X.

 

__Si la composante horizontale de notre traction sub-verticale ne suffisait pas pour adosser le navigant au siège, le système actuel peut demeurer en complément ou sous une forme intégrée. Une portion du dossier siège dans le dos pourrait translater verticalement, entraînée par la friction du buste en mouvement.

IV.

 

__La traction (retenue) aux épaules est dosable (suivant la résistance/tolérance aux épaules par la cage) : c’est dit.

Il est évident et du ressort des constructeurs de prévoir que cette retenue s’efface instantanément ou rapidement dès le stop fusée siège. Elle s’adapte donc aux poids apparents.

 

IV.

V.

__Il n’est pas question de faire supporter tout le poids du pilote dans les sangles d’épaules mais seulement tout ou partie du « upper body » et seulement lors de l’hypergravité. Ensuite à l’ouverture du parachute : c’est le harnais traditionnel qui, passant sous le pelvis doit prendre le relais avec l’airbag de cou. En effet si l’airbag de cou doit se dégonfler partiellement au stop fusée il peut se regonfler à l’ouverture du parachute (head whiplash) puis se dégonfler à nouveau après ce choc et se réactiver au ‘landing’ (la technologie des ’’long duration airbag’’ pourra être employée si nécessaire).

 

VIII.

 

__Lors de la transition ’’push pull’’et en cas de forte orientation vers des high +Gz :

la retenue effective dès la « low Gz baseline » (<1G)  n’est qu’une hypothèse de travail et accessoire ; le terme « perhaps » a été employé et dans un temps au conditionnel dans notre document.

Elle pourrait cependant s’appliquer dès (+0Gz)* qui correspond à l’espace vertébral optimal** de repos (supine position), ou bien même dès –1Gz en travail résistant vers 0Gz+.

 

(*) www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ43410.pdf   pages 19-20 : “During F15 &F16 US Air Force operations, it was found that 17 to 66% (varying with mission profile) of engagements include the push-pull component with a typically hypogravity exposure [from 0G to 0.5G] for 3.5 to 5 seconds” (reduce drag &increase airspeed notably). This low Gz baseline (push) precedes hypergravity [1G to 10G+] (pull).

Michaud VJ, Lyons TJ. The ’’push-pull effect’’ and G-induced loss of consciousness accidents in the US Air Force. Aviation, Space, &Environmental Medecine 1998;69:1104-6. Michaud VJ, Lyons TJ, Hansen CM. Frequency of the ’’push-pull effect’’ in the USAF figther operations. Aviation, Space, &Environmental Medecine 1998;69(3) :201.

 

(**)           Pour le navigant, même s’il est retenu au support fessier par des sangles et par le harnais actuel, lors de la course en hypogravité sa colonne veut se mettre a) en décompression [plage des  0<Gz<1]  ou b) en tension [plage des Gz <0] par rapport :

1.     A son niveau de compression maxi à l’éjection ou en high sustained +Gz 

2.     A la sollicitation nulle : 0G as in supine posture.  

Notons encore que during  « inverted or negative G flight conditions at the time of ejection…DANGEREUSE SUITE » (o), l’accompagnement résistant, d’une substantielle retenue, pourrait amortir la course d’effacement/ réduction de l’étirement spinal en captant l’énergie emmagasinée dans l’étirement naturel (hypogravité) afin qu’elle n’aille pas augmenter quelque overshoot (résiduel ou bien celui inhérent à la technique passée) et le risque de blessures.

 

2.4) Voir spécialement source (u)  [existe aussi en html] :

 

II.

 

__Page 4 :  “Human Tolerance to Acceleration-Induced Spinal Injury” est un programme de l’US Naval Air Systems. En mai 2001. Soit bien après (plusieurs années) les dernières avancées des années 90. Le problème des blessures spinale est donc crucial encore postérieurement, au point d’y consacrer un programme toujours d’actualité.

 

__Page 1 : See the “Chairman ‘s Message… 2001 International Acceleration Research Workshop. This year’s program is a blend of both oral laboratory reports, as well as a number of special presentations on “works-in-progress.” In keeping with last year’s workshop, I have chosen a discussion topic that will (hopefully) form the basis of spirited discussion during the workshop. I am grateful to Barry Shender for submitting this topic.”

 

 __Page 10 :  “Discussion Topic… the occurrence of soft and hard tissue injury during every day flight has become a greater and greater operational problem.”

Vœux pieux aux vues des dégâts et des menaces sur la santé des navigants au long terme. Nombreux rapports rappelés.

See also (g,h,i,j,q31-32,37-38,s).  (q31-32) :    b)  Disc Degeneration, Lifetime Incidence.

XI.

 

“Chairman’s Note : This is an important topic for us as a research community to address. It goes to the very heart of issues surrounding the protection and long-term health and safety of pilots flying high performance aircraft. I would like to thank Barry for submitting this topic, and urge all participants to carefully consider the issues involved and the questions that Barry has raised. I hope that this topic provokes a lively and constructive debate, and provides the impetus for many ongoing collaborative research efforts.”

Le spécialiste Mr Barry Shender intervient dans ce document sous l’égide du Naval Air Warfare Center. Trésorier du Safe Association, il est également l’un des signataires d’une publication sur la résistance physique demandée aux femmes au niveau de leur buste, à l’éjection ou sous hypergravité : 

Female Upper Body Dynamic Strength Requirements in High Performance Aircraft…” www.stormingmedia.us/20/2089/A208903.html

 

 

 

 

3) AUTRES APPLICATIONS   

 

III.

 

3.1) Fatigue Counter-Measure. Axe majeur dans les préoccupations.

Voir (b30-32/f°21-23 After Madsen:  harness double strop suspension)

__Sous 1G  c’est le mode de suspension le plus durable (1 heure+) sans blessures. See syncope phenomenon in “Horizontal Tilt Table” (Capter title).

Il se rapproche de notre system de “fatigue counter measure” lors de son initialisation : notre support s’affaissant les genoux sont plus haut que le pelvis + traction aux épaules. Alors que tous les autres (full-body, chest harnesses, waist belts…) sont dangereux beaucoup plus vite :  Le full body ne tire pas sous les bras et les jambes pendent. Le waist belt + sit harness n’élève pas les genoux. Le chest harness occasionne du venous pooling dans les jambes qui pendent.

 

__Sous forts “G ” nos sangles dépaules soulagent la sitting posture, mieux que sans traction. Les genoux sont plus au dessus du bassin qui s’enfonce dans le support ammovible :  « venous return is secured » => flux au cerveau maintenu + longtemps

=>   G-LOC  retardé

VI.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Voir encore (g) (q) et document IAW2001Newsletter.PDF (u) précité, pages 5-6 et 8 :

“Increase aircrew G &GLOC tolerance”

“Techniques for releasing the total incapacitation period associated with GLOC”

Si les pilotes étaient moins fatigués, il y aurait moins de situations à risques d’éjection (m5 Rockwell).

 

3.2) Pain Counter-Measure. Arm pain: voir même document ci-dessous en IV et (q37-38).

 

I.

 

3.3) Rappelons les avantages en cas de crash* contrôlés ou non: auto rotation, deck landing, ou plus sévères, ou ceux dans les domaines non aero (bateaux rapides, roller coaster etc).

 (*)            Michaud VJ, Lyons TJ. The ’’push-pull effect’’ and G-induced loss of consciousness accidents in the US Air Force. Aviation, Space, &Environmental Medecine 1998;69:1104-6.

Michaud VJ, Lyons TJ, Hansen CM. Frequency of the ’’push-pull effect’’ in the USAF figther operations. Aviation, Space, &Environmental Medecine 1998;69(3) :201.

collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ43410.pdf   pages 19-20 : “During F15 &F16 US Air Force operations, it was found that 17 to 66% (varies with mission profile) of engagements include the push-pull component with a typically hypogravity exposure from 0G to 0.5G for 3.5 to 5 seconds (reduce drag &increase airspeed notably).”

 

 

 

 

      COMPLEMENTS TO ABSTRACT & RECALL OF OUR WEBSITE ARGUMENTS :

ANSWERING QUESTIONS ONE BY ONE

 

 

 

I.    Could our system realize savings of life, and interest Air Forces & Civil matters/means? Regarding the 10% ejection lethality rate & the Rocwell crash rapport information (m5) ?  

 

__(c52) f°45   “Hearon, et al :  …Vertebral Fracture in the F/FB-111 Ejection Experience 1967 to 1980… Spinal injuries occurred in 23 of the 78 cases investigated (axial compression & flexion)”

__(c57) f°50   “Schall D. G. :   Non Ejection Cervical Spines Injuries Due to +Gz in High Performance Aircraft.”

__(e92)  “Acceleration-induced injuries are due to the body’s inertial response to crash forces. An example of an acceleration injury is rupture of the aorta in a high sink rate rotorcraft crash. Here the application of the force occurs through the individual’s thighs, buttocks and back, where he is contact with the seat. The injury mechanism itself is due to tensile/shearing forces generated from the heart’s inertial response to the resulting upward acceleration of the body. Other examples of acceleration injuries include atlanto-occipital shearing [lethal], vertebral fractures and contrecoup brain injuries.” Also concerning #III below.

__(e95)  “The most predominant impact direction for a helicopter occupant is vertical (i.e., eyeballs downward). A shoulder harness increases human tolerance without injury for the vertical direction from 4-G’s to 25-G’s, an improvement factor of six. A shoulder harness occupant survivability in the vertical impact scenario because it retains the occupant’s pre-crash position (i.e., upper torso remains essentially upright), keeping the spinal column aligned properly and allowing it to carry much higher crash loads… Laterally, the shoulder harness increases tolerance by a factor of two.” [more tolerance improvements can be expected with our method by a new factor, because of reduced compression]. See also (f34).

__(f25)   “serious injury in general aviation accident… frequently sustained at the head (overshoot)… attributed to the lack of adequate torso restraint… shoulders provide a sufficient attachment point for torso restraint… Special attention should also be given to the angle of position of attachment of the shoulder belts to the structure. Incorrect belts angle… could result in spinal injury due to the compressive load introduced by the shoulder strap angle.

“webbing with a large width is desirable to decrease injury due to the restraint system.”

__(f34)   “shoulder harnesses in aircraft might have prevented 76% of the fatalities &79% of the serious injuries.”

“2% of fatalities may have been prevented & 38% of the serious injuries may have been prevented by the use of energy absorbing seats.”  [See also III. (e95) below]

__(f38)  “compression of the lower lumbar spine during high impact emergency landings often resulted in back injury”

“Additional injury due to arrestment by the webbing (&buckles) restraint system with little distribution of impact pressure is also a disadvantage.”

__(g21) f°10  “Les plateaux cartilagineux sont souples et les 1er à subir une déformation lorsqu’un segment vertébral est sous charge. Leur porosité permet à l’eau expulsée d’un disque comprimé de circuler. ”

__(g23-24) f° 12-13   “Comportement mécanique… Le disque augmente son rayon de 0.75mm pour une force de compression de 1000N. Sous une compression prolongée, le nucléus peut perdre jusqu’à 20% d’eau. Inversement lorsque la charge est réduite, le disque réabsorbe le liquide pour atteindre un nouvel équilibre osmotique… phénomène de déformation croissante lorsqu’une contrainte constante est appliquée… Le fluage sous charge compressive s’explique par l’exsudation du fluide qui a lieu en réponse au dépassement de la pression nucléaire admissible.

__(g24-25) f°13-14 “Dégénérescence du disque intervertébral… La pathologie du disque intervertébral est un problème épidémiologique majeur. Mécanismes responsables… problèmes de nutrition du nucléus… mutations de protéines … accumulations de produits dégradés dans la matrice… fracture par fatigue de la matrice fibreusenombre d’artère (vascularisation) diminue… plateaux cartilagineux se calcifient, perdant leur porosité…”

__(g34-35) f° 23-24   “Les disques dégénérés se caractérisent par une réponse en déplacement plus grande que les disques sains : le nucleus perd en incompressibilité et le réseau fibreux de l’annulus est endommagé. Hirsh et Nachemson… ont été les premiers à déterminer que la dissection des arcs postérieurs avait peu d’influence sur le comportement en compression. ”

TRADUCTION PARTIELLE

__(g153-f°142) “Finally, disc degeneration effects on creep properties have been demonstrated, notably stating higher creep rates for more degenerated IVDs (Kazarian, 1975; Keller, et al., 1987; Li, et al., 1995).

 

__(g161)  “Though able to sustain high load magnitudes in various directions according to the individual posture… better understanding of the mechanisms implied in degeneration &their consequences on IDVs load-carrying performance is therefore of high clinical significance

__( j )  …la dégénérescence discale entraîne une augmentation de la charge sur les facettes articulaires, et en conséquence, une dégénérescence des facettes articulaires… Les facettes, en présence de disques sains, supportent environ 10% de la compression du poids du corps, et le complexe corps vertébral-disque-corps vertébral supporte 90% du poids. Dans le cas d’une dégénérescence discale, les facettes doivent supporter un poids de plus en plus important, pouvant aller jusqu’à 50-70% du poids total.

__(k10)  Ligne 23    “Apart from the immediate dangers of involuntary movements occurring during a high speed manoeuvre the cumulative effects of G-force on the pilot’s head &body cause pilot fatigue which also impairs pilot performance. It would therefore be to a pilot’s advantage if the effect of high G-forces could be compensated for or reduced in some way.”

__(m5)  lignes 9-17  “…improved aircraft manoeuverability is counterproductive if the resulting forces imposed on the unprotected pilot are beyond human tolerances. One can only speculate as to the number of fighter aircraft lost as a result of pilot blackout…”

__(n1)   “Abstract… Protecting the head &neck &spinal cord from injuries resulting from rapid forward deceleration &ejection… neck of human beings is at risk from lethal spinal cord injury with rupture of the atlanto-occipital membrane which holds the base of the skull to first cervical vertebra…”

__(n3) lignes 50-64 & (n4)     [Défaut des restraint harnesses qui augmentent le whiplash de la tête : létal… idem in Formula racing  =>   nécessité de soutenir la tête.]

__(p896) cap 22-20   We can demonstrate a clear relationship between through-the-canopy ejection with higher peak G catapults and the incidence of vertebral fracture. We "know" that improper body position (including a loose harness) increases the risk of injury.”

__(q1)  “Ut Secure Volent”    [Tronc Ailé en suspension du blason 2005 de : RAF Centre of Aviation Medecine]

__(q13)   “USAF GLOC (G-induced Loss of Consciousness) Accident :   Lyons, TJ et al. Aviat Space Environ Med 2004 ;75 :479-48

__(q32)   “Current &next generation of agile aircraft have the following properties:

Rapid G onset rate of over 10 Gs-1    (therefore no visual symptoms prior to G-LOC…)”

 

 

 

II.  Is spinal injury still today a high preoccupation after the 1990s enhancements? Notably in the Navy & for women crew (after B. ShEnder)?

     

 

__(u4)  “Human Tolerance to Acceleration-Induced Spinal Injury” est un programme de l’US Naval Air Systems. En mai 2001. Soit bien après (plusieurs années) les dernières avancées des années 90. Le problème des blessures spinales est donc crucial encore postérieurement, au point d’y consacrer un programme toujours d’actualité.

“US Navy Acceleration Research Programs. Barry Shender, PhD. Naval Air Warfare Center Patuxent River MD, USA… Head/neck injury during maneuvering acceleration: As part of the US Naval Air Systems program "Human Tolerance To Acceleration-Induced Spinal Injury", the Naval Air Warfare Center Aircraft Division Patuxent River has three studies completed or in-progress… shenderbs@navair.navy.mil ”

__(u1)   “Chairman ‘s Message… 2001 International Acceleration Research Workshop. This year’s program is a blend of both oral laboratory reports, as well as a number of special presentations on “works-in-progress.” In keeping with last year’s workshop, I have chosen a discussion topic that will (hopefully) form the basis of spirited discussion during the workshop. I am grateful to Barry Shender for submitting this topic.”

__(u10)  "Head/neck injury during high performance flight in both fast jets and attack helicopters. The discussion topic for this year’s Workshop was submitted by Dr Barry Shender… Historically, research into head/neck injury tolerance has focused on the response to impact acceleration, crash, parachute opening shock, etc. Designs for protective systems have similarly stressed these areas and have, for the most part, relied on automotive data. With the expansion of the anthropometric range of pilots, male and female, and the increased use of helmet-mounted devices (HMD), the occurrence of soft and hard tissue injury during every day flight has become a greater and greater operational problem. There have been a several reports by Australia, Belgium, China, Finland, Sweden, and USA over the past ten years or so which have documented the increased incidence of injury, typically associated with exposures of +4 Gz and above. So, the problem exists - but the data to correct the problem does not. There are a variety of unanswered questions of interest to our Workshop…”

[Vœux pieux aux vues des dégâts et des menaces sur la santé des navigants au long terme. Nombreux rapports rappelés. See also (g,h,i,j,q31-32,37-38,s). (q31-32) : b)  Disc Degeneration, Lifetime Incidence]

“Chairman’s Note : This is an important topic for us as a research community to address. It goes to the very heart of issues surrounding the protection and long-term health and safety of pilots flying high performance aircraft. I would like to thank Barry for submitting this topic, and urge all participants to carefully consider the issues involved and the questions that Barry has raised. I hope that this topic provokes a lively and constructive debate, and provides the impetus for many ongoing collaborative research efforts.”

__(c47-48) f°40-41   Degeneration of the intervertebral discs :  “with age the nucleous gradually loses its ability to bind water under mechanical pressure and becomes fibrocartilaginous… butterfly swimmers… sports injuries”

“Burton et al. :  Cervical spinal Injury from Repeated Exposures to Sustained Acceleration, Research &Technology Organisation of NATO (RO-TR-4)… Caused by manoeuvres in the range 4G to 9G. Several pilots suffered bulging cervical discs.”

“Higher G levels may be an issue for flyers with relatively low density of vertebrae.” [& low cross sectional vertebrae as with women crew]

“Review of the Vertebral Column Pain Problems in Polish Pilots –Tatar et al… caused by rapid jolt & high acceleration values.”

__(c49) f° 42    Military Aircrew Head Support System (MAHSS) :  “Neck injuries… during violent manoeuvres such as 8G turns… added weight of sophisticated flying helmets… leading to incapacitating… (permanent physiological damage). The problem is compounded if the airman has to eject at 16G, hence the introduction of the MAHSS.”

__(c52) f°45  Hearon, et al.  “…Vertebral Fracture in the F/FB-111 Ejection Experience 1967 to 1980… Spinal injuries occurred in 23 of the 78 cases investigated (axial compression & flexion).”

__(c57) f°50    Schall D. G.    “Non Ejection Cervical Spines Injuries Due to +Gz in High Performance Aircraft.”

__(e93)  “hazards associated with the operational environment of military wheeled-ground vehicle also place a vertical (z-axis) response requirement on the vehicle’s occupant protection system. Occupant inertial response to mine blast forces and rough terrain maneuvers requires that the energy associated with these hazards be managed to preclude spinal injuries.”

“The Air force’s dynamic response index (DRI) provides a spinal injury criterion based on this principle, that has been used to qualify ejection seats and has also been used to comparatively assess crash resistant energy absorbing seat systems.” [The dynamic amplification factor =dynamic overshoot]

__(f25)   “serious injury in general aviation accident… frequently sustained at the head (overshoot)… attributed to the lack of adequate torso restraint… shoulders provide a sufficient attachment point for torso restraint… Special attention should also be given to the angle of position of attachment of the shoulder belts to the structure. Incorrect belts angle… could result in spinal injury due to the compressive load introduced by the shoulder strap angle.

“webbing with a large width is desirable to decrease injury due to the restraint system.”

__(g16) f°4  Le tissus discal n’est pas vascularisé il dépend en cela de la porosité des plateaux cartilagineux qui le surfacent.

__(g19) f°8   Nucleus pulposus   Son liquide constamment sous pression absorbe et répartit les charges et les chocs… doté d’un métabolisme actif, assurant un renouvellement des protéoglycanes et du collagène…essentiellement de type II… La matrice extra cellulaire du nucleus est biochimiquement équivalente à celle du cartilage… avec des fibres de collagène entremêlées à de large molécules de protéoglycanes. »  (80% d’eau chez l’adulte de 20ans).”

__(g21) f°10  “Les plateaux cartilagineux sont souples et les 1er à subir une déformation lorsqu’un segment vertébral est sous charge. Leur porosité permet à l’eau expulsée d’un disque comprimé de circuler. ”

__(g23-24) f° 12-13   “Le disque augmente son rayon de 0.75mm pour une force de compression de 1000N. Sous une compression prolongée, le nucléus peut perdre jusqu’à 20% d’eau… phénomène de déformation croissante lorsqu’une contrainte constante est appliquée… Le fluage sous charge compressive s’explique par l’exsudation du fluide qui a lieu en réponse au dépassement de la pression nucléaire admissible.

__(g24-25) f°13-14 “Dégénérescence du disque intervertébral… La pathologie du disque intervertébral est un problème épidémiologique majeur. Mécanismes responsables… problèmes de nutrition du nucléus… mutations de protéines … accumulations de produits dégradés dans la matrice… fracture par fatigue de la matrice fibreusenombre d’artère (vascularisation) diminue… plateaux cartilagineux se calcifient, perdant leur porosité…”

__(g34-35) f° 23-24   “Les disques dégénérés se caractérisent par une réponse en déplacement plus grande que les disques sains : le nucleus perd en incompressibilité et le réseau fibreux de l’annulus est endommagé.”

TRADUCTION PARTIELLE

__(g153-f°142) “Finally, disc degeneration effects on creep properties have been demonstrated, notably stating higher creep rates for more degenerated IVDs (Kazarian, 1975; Keller, et al., 1987; Li, et al., 1995).

 

__(g47-48) f°36-37   “Avec les multiples sollicitations qu’il doit quotidiennement subir, le DIV est progressivement soumis à des dégradations liées en partie au vieillissement, plus qu’aucun autre tissu mou du système musculo-squelettique… Ce phénomène, appelé dégénérescence discale…s’exprime au travers de modifications biochimiques principalement localisées dans le nucléus pulposus (baisse de la teneur en eau et en protéoglicanes) qui perd son aspect gélatineux. Ces altérations imposent au réseau de collagène de résister à des charges plus importantes, ce qui engendre des initiations de ruptures menant à des fissures radiales ou circonférentielles macroscopiques dans l’annulus fibrosus… à terme des modifications de volume et de forme, notamment une perte de hauteur. A ces endommagements intra-discaux peuvent s’associer une arthrose des facettes articulaires et la formation d’ostéophytes sur les corps vertébraux.”      

TRADUCTION  CI-DESSOUS  VERIFIER

__(g144) f°133  “…better understand low back pain factor… Aging &large daily loadings progressively damage the IVD… Disc Degeneration (DD)… biomechanical changes mainly localized in the nucleus pulposus (decrease of water content &proteoglycans), which loses its gelatinous aspect. These alterations enforce the collagen network to sustain higher stress, hence initiating macroscopic radial or circumferential tears in the annulus fibrosus. Over a long period, these sequential events lead to volume &shape modifications, such as a loss of disc height. Extra discal damage (osteoarthritis, ostheophytes) can also appear… influence he mechanical properties of he functional spinal unit… (FSU…).”

 

 

 

 

 

__(g157) “…The presence of tears in the collagen network influenced instantaneous deformation; Hirsch &Nachemson (1954) demonstrated that his phenomenon was more evident with a higher load (1000N).

… more dehydrated discs… had less damping capabilities than the other.”

__(g161)  “better understanding of the mechanisms implied in degeneration &their consequences on IDVs load-carrying performance is therefore of high clinical significance.

__( j )  …la dégénérescence discale entraîne une augmentation de la charge sur les facettes articulaires, et en conséquence, une dégénérescence des facettes articulaires… Les facettes, en présence de disques sains, supportent environ 10% de la compression du poids du corps, et le complexe corps vertébral-disque-corps vertébral supporte 90% du poids. Dans le cas d’une dégénérescence discale, les facettes doivent supporter un poids de plus en plus important, pouvant aller jusqu’à 50-70% du poids total.

__(l6)   lignes 33-45  “Tactical aircraft currently being developed has increasing maneuvering capability with accompanying increasingly high acceleration loads on the crewmembers. Resisting such high accelerations or “G” force loads can cause excessive crew fatigue & a decrease in a crewmember’s peak operating capability. Therefore, there is a need to assist crewmembers in resisting the g loads experienced in high accelerations maneuvers in order to prevent excessice fatigue & loss of operating capability. Known torso restraint retraction systems do not fulfil this need because they are not adapted to respond to in flight accelerations conditions.”

D’APRES LEUR ANGLE, LES SANGLES NE PASSENT PAS SOUS ARMPITS, PAS DE TRACTION DU BUSTE NI DE SUPPORT FESSIER AMMOVIBLE

__(n1)   “Abstract… Protecting the head &neck &spinal cord from injuries resulting from rapid forward deceleration &ejection… neck of human beings is at risk from lethal spinal cord injury with rupture of the atlanto-occipital membrane which holds the base of the skull to first cervical vertebra…”

__(n3) lignes 50-64 & (n4)     [Défaut des restraint harnesses qui augmentent le whiplash de la tête : létal… idem in Formula racing  =>   nécessité de soutenir la tête.]

__(o) “Spinal impact associated with ejection may result in vertebral compression fractures. The most common fracture sites are T-12 and L-1, although other sites may be involved due to poor body position (Rotondo, 1975).”

“One of the most vulnerable sites for injury of the spinal column is the region around the eleventh and twelfth thoracic vertebrae (T11-T12). From the eighth thoracic to the first lumbar vertebrae is the region of greatest frequency due to the convergence of a multitude of factors. The forward bending movement during ejection is accentuated because the center of gravity of the head and torso is considerably anterior to the spinal plane (Nuttal, 1971).”

__(q31-32)   “Neck Pain predisposing factors :   /High +Gz acceleration   /High +Gz sustained for long periods  /High G onset rate   /Helmet weight   /Age    /Flight hours    /Unprepared for manoeuvre.

Mechabnism of neck pain

a)  Acute in-flight pain:   /Ligamentous injury--muscle strain   /cervical disk bulge , annular tear, C3-4 (Hämäläinen 1993)     /compression fracture  (Andersen  1991)     /Fractured spinous process

/Facet joint dislocation

b)  Degenerative disease:    /Disk degeneration    /Osteophytes…

Lifetime incidence of neck pain has beeb reported in the following studies:

60% USN (Knudson 1988)    48% FAF (Hämäläinen 1993)       63.6% 1 year prevalence USAF (Vanderbeek 1988)      89.1% ‘checking 6’ in Japanese F15 (Kikukawa 1995)…

Some studies noted increased incidence with increased aircraft agility… meta-analysis has now demonstrated a high level of probability that degenerative spinal disease occurs more commonly in fighter pilots than age-matched controls.

G related neck injury may become more prevalent over the next few years. Unfortunately aircrew helmets are tending to become heavier rather than lighter, with the addition of night vision equipment, FLIR cameras &helmet mounted display systems. The centre of gravity of helmets & optics is a major determinant of neck strain.”

__(s4-5)  “neurological sequelae of spinal injury, KS Mani, vol 17, summer 1974, N°1”

 

 

 

 

III. In what pre-tension &tension is an advantage facing the current forced compression distribution  & facing GLOC?    (Over 1700 pounds)

 

__(a27)  f°20   “Parachute opening & ejection shockscrushing resistance of the spiral column 

__(a94-97-101)  f°87-90-94    [Studying prevention of ejection or crash accident injuries]

APPENDIX. FREE FALL ARREST NEW BODY CONTAINMENT DEVICE”

[Fall arrest “life jacket harness” [chest upper torso harness without legs straps] preferred to waist belt & even to ejection seat harness with leg straps:  straps around the legs… would have increased the arrest load.”  Note that our collapsing buttock support advantageously replaces these legs straps.]

“A garment enveloping the whole of the upper torso. The principle configuration of the straps was as such to encircle the torso & arm holes of the lifejacket, and to provide a self-tightening feature… When a fall-generated impact force was applied via the strop which connected the harness to the aircraft, the loops of webbing around each arm hole would tighten. This would hold the lifejacket closely around the upper torso, and would offer two main advantages: …distributing the arrest load over the whole upper torso. During testing, it was noted that the tension around the chest… did not prevent breathing.”

__(a109)  f°102   “Conclusion. This findings in this appendix generally support & reinforce the conclusions in the main report (section 5) and the future research directions & recommendations for further work (section6).”

“…close correlation between body harness design, energy absorbing design and parachute opening testing practice… and that of corresponding practices within the fall arrest industry.”

__(b19) f°8   Harness suspension: review & evaluation of existing information, by Paul Seddon. Amphoux studied 5 subjects …ages of 18 & 59 during passive suspension, using a torso harness, a parachute harness, a waist belt with shoulder straps and a thoracic belt… The longest suspension time for the torso harness was 43.25 minutes. The parachute harness was tolerated for 28.17 minutes (Full body harness => compression); the thoracic belt for one minute… 2 subjects… using the waist belt with shoulder straps lasted one minute &3 minutes… (1982)

__(b30-32) f°21-23     “TILT TABLE & DOUBLE –STROP SUSPENSION TESTS,  [P Madsen et al. 1996/97, Aviation, Space &Environment Medecine, 1998]. Although low blood pressure caused by being in a vertical plane &not moving is usually not a problem, some patients faint (which can lead to death)…

Test 2 :  …subject to be suspended in a double padded strop arrangement. One strop was placed around the thorax & connected to a rope, and the other strop was passed under the legs just behind the knees &connected to the rope in the same place as the first strop. On lifting the subject into a suspended position, a sitting position was assumed, so that the upper part of the legs was roughly just above horizontal:

Figure 2 :  Suspension with a double-strop device (after Madsen). Thorax is upright & venous return is secured by elevation of the legs… subjects remained suspended without moving for one hour or until pre-syncopal symptoms or signs appeared… only the female subject …was taken down after 50 minutes.

__Sous 1G  c’est le mode de suspension le plus durable (1 heure+) sans blessures. See syncope phenomenon in “Horizontal Tilt Table” (Capter title).

Il se rapproche de notre system de “fatigue counter measure” lors de son initialisation : notre support s’affaissant les genoux sont plus haut que le pelvis + traction aux épaules. Alors que tous les autres (full-body, chest harnesses, waist belts…) sont dangereux beaucoup plus vite :  Le full body ne tire pas sous les bras et les jambes pendent. Le waist belt + sit harness n’élève pas les genoux. Le chest harness occasionne du venous pooling dans les jambes qui pendent.

 

__Sous forts “G ” nos sangles dépaules soulagent la sitting posture, mieux que sans traction. Les genoux sont plus au dessus du bassin qui s’enfonce dans le support ammovible :  « venous return is secured » => flux au cerveau maintenu + longtemps   =>   G-LOC  retardé

 

This subject also took part in the head-up tilt tests where she experienced pre-syncopal symptoms after only 5 minutes. (See “Tilt Table”)Leg elevation prevented vasovagal reactions in 8 out of 9 subjects… a much lower risk of pre-syncope than during the head-up tilt test (1).

 

 

 

 

__(b43) f° 32    “If the legs & arms aren’t moving, there is no pumping action, & blood tends to stagnate in the arms &legs… there is less blood return to the heart… to the head… what leads to the faintness.” (pre-syncope =pre-LOC)   

__(b51)  f°40   interest of ‘muscle pumping’ … legs in a substantially horizontal position or with the knees elevated (note 35).”

[Our system adds more movement liberties to the pelvis-legs & chest-arms regions.]

__(b60) f°49  “[FALL ARREST, Amphoux 1983 Toronto Fall Protection Seminar]… Amphoux considered the point of attachment to the (full body) harness. He explained that whatever the place of attachment, the cervical column (i.e. the spine at the neck) would always be compressed. Tests carried out notably by the Japanese & the Americans on dead bodies had indicated that the resistance of the vertebrae to compression was less than to tension (idem P. 66, f°55)… especially true in the most fragile part… the neck…”  

See :   www.dodsbir.net/sitis/view_pdf.asp?id=96-6.PDF   Evaluation of an Energy Absorbing Truck Seat for Increased Protection from Landmine Blasts,  Alem & Strawn,  Aircrew Protection Division, USAARL MINE CENTER BLAST EA (Energy Absorber) SEATS :  

_page 17  f°14   fig 1,   neck tension force :    750 to 250 LB

_page 28  f°25   fig 12, lumbar spine forces (100HZ filter) : tension +700 LB to  -1329 compression

_page 20  f°17   fig 4,  Passenger EA seat acceleration :  tension +22.76 LB to -42.76  compression.

(b60) f°49 continuation :  “It would be better for the compression to be localised on the body of the vertebrae and not on the posterior joint, which were too fragile… Attachment point would be better on the back than pre-sternal…  1800 pounds (8KN) is considered the appropriate maximum arrest force… harnesses are to be used in arresting falls… (12 KN = 2,700 pounds threshold of significant injury incidence as for parachutists).”

__(b80) f°69    Recommendations for further work… As the majority of the body weight is usually taken by the sub-pelvic &pelvic parts of the body, both during the arrest of a fall & in suspension, research could be undertaken to examine the most ergonomic designs for leg loops/thigh/waist support straps. In addition, similar work could be undertaken for the chest &shoulder sections of full body harnesses, as these also play a part in taking some of the load in a fall & in providing support after the fall.

__(c20)  f°13     “center gravity of the trunk is in front of the spinal column so that considerable muscular effort is required to keep he spine in ‘optimum alignment’. The muscular effort thus induces disc forces that are much higher than would be expected from the weight of trunk above the disc… lumbar spine… intervertebral discs in this region of the spine are 3 times stronger than the vertebrae… the apparent strengh of the lumbar spine at these accelerations is the support given by the surrounding muscular wall and other body tissue.”

[=>  les vertèbres lombaires se fracturent plus que leurs disques alors que les blessures cervicales concernent les 2 en même temps (résistances avec ‘Compression Breaking Load’ proches. More, tension alleviates posture in profit of straining manoeuvers & as a fatigue counter-measure]

__(c47-48) f°40-41   “Burton et al. :  Cervical spinal Injury from Repeated Exposures to Sustained Acceleration, Research &Technology Organisation of NATO (RO-TR-4)… Caused by manoeuvres in the range 4G to 9G. Several pilots suffered bulging cervical discs.”

“Higher G levels may be an issue for flyers with relatively low density of vertebrae.” [& low cross sectional vertebrae as with women crew]

“Review of the Vertebral Column Pain Problems in Polish Pilots –Tatar et al… caused by rapid jolt & high acceleration values.”

__(c49) f° 42    Military Aircrew Head Support System (MAHSS) :  “Neck injuries… during violent manoeuvres such as 8G turns… added weight of sophisticated flying helmets… leading to incapacitating… (permanent physiological damage). The problem is compounded if the airman has to eject at 16G, hence the introduction of the MAHSS.”  [Our inflatable collar reduces neck compression and transmits head & helmet’s weight in the tensioning shoulder & harness belts, thus discharging spinal loads.]

__(c56)  f°49  “Sances et al 1981 :  Bioengineering Analysis of Head &Spine Injuries… Spinal injuries from blows through the head to the spine

__(c57)   f°50    “Schall D G : Non Ejection Cervical Spines Injuries Due to +Gz in High Performance Aircraft.”

__(c59)  f°52   “Snyder RG 1963  :  Aerospace Medecine Volume 34, N°.8, August 1963. When discussing +Gz seated impacts, (he) states that “pelvic & vertebral trauma are prevalent… particularly in the L-4 to T-12 area supporting tissue structuresare often damaged in impact but are not diagnosed due to more painful complications masking such injuries.”

__(c61)   f°54      “Swearingen  JJ et al  December 1960… Severe organic pain :  stomach…”

__(c63)   f°56      “edge-damage to the vertebrae  (flexion or lateral bending)…” [See also (a25)  f°18 “adjacent spinal vertebrae… square to each other. (Martin Baker)”]

__(e76) “slack in the restraint system can cause problems, including ‘submarining’…”

__(e87)  Pretensioners :  “Crash sensors detect a crash pulse that exceeds the predetermined initiation threshold…”

__(e92)  Already mentioned higher, in #I : “Acceleration-induced injuries are due to the body’s inertial response to crash forces. An example of an acceleration injury is rupture of the aorta in a high sink rate rotorcraft crash. Here the application of the force occurs through the individual’s thighs, buttocks and back, where he is contact with the seat. The injury mechanism itself is due to tensile/shearing forces generated from the heart’s inertial response to the resulting upward acceleration of the body. Other examples of acceleration injuries include atlanto-occipital shearing [lethal], vertebral fractures and contrecoup brain injuries.”

__(e96)  “Restraint effectiveness with a SBS (Integrated Seat Belt System, front crashes, BMW cars) : “Essentially a horizontal belt run onto the shoulder, coupling the occupant more rapidly to the seat and participating in the crash event as early as possible.” (Chest acceleration drops from 48G to 34G with 29% reduction). [With our device, same earlier participation during vertical impact, & less dynamic overshoot]

__(f30) Frontal impact:  “When dual straps are used the total strap loads may not exceed 8900N [(f36): 2000 pounds] …however influenced by belt geometry, a factor not represented in the analysis.”   [tolerances should be improved by the prehensile harness around chest &armpits: wider webbing/ webbing with a large width. See our system, & (f25) mentioned at # I and II]

Abdominal Injury  “Considering the potential severity of abdominal loading, it is recommended to avoid loading of the abdominal area.”

“Compression loads on the spine frequently causes damage to the vertebral column, particularly to the upper lumbar and lower thoracic segment. This is especially true in aircrafts accidents when the impact load normally involves a high magnitude vertical component.”

__(f49)  “restraining methods that will not contribute to injuries during a crash. Restraints should be applied to portions of the body best able to withstand high impact forces &accelerations like the shoulders… &pelvis.”

__(f50) “provide energy absorbing mechanisms &materials in the structural design that would attenuate crash forces…”

__(f52)  “No seat structure behind the pilot that would apply a dangerous compressive force to the spine during a crash.”

__(f56)  “…pelvic restraint in the prone position would provide the advantage of tension rather than compression loading of the lumbar spine… upper torso would displace forward during a crash.”

__(f82)  Test 2, frontal impact

 

§        Normal seated &supine seated pilot.

Spinal compression loads were however induced by wedging of the upper body between the angled shoulder straps &the seat base…” (but the LLC was not exceeded)

 

§        1st restraint concept of the Prone pilot as indicated in Figure 4.22 (f76). 

“…massive spinal compression force was induced by the mass of the upper body &pelvis impacting into the shoulders straps. This led to the conclusion that sufficient pelvic restraint was vital to avoid high compression loads to the spine in a frontal impact scenario.”

ET A CONCLUSION QUE CECI EST TRANSPOSABLE, A L’IMPACT VERTICAL, AU SOULAGEMENT DE LA COMPRESSION LOMBAIRE SOUS LE POIDS DU BUSTE, EN MODE ASSIS NORMAL

“The hip belts did not restraint the pelvis from displacing forward because the attachment angle was of such nature that the belts were not elongated but only rotated around the seat attachment points by the pull of the pelvis.”

TOUT COMME LE HARNAIS ACTUEL NE RETIENT PAS LE THORAX DE DESCENDRE, SES SANGLES D’EPAULES, N’ETIRENT PAS AXIALEMENT LA COLONNE ET FONT UNE ROTATION AUTOUR DE LEUR FIXATION, ENTRAINEES PAR LE POIDS APPARENT DU THORAX

 

§        ”In the proposal of the 2nd restraint concept indicated in Figure 4.23… attachments of the hip belts were moved backwards to offer more resistance to the forward pull of the pelvis... two back straps achieved additional pelvic restraint.”  [2nd restraint concept in Figure 4.23, (f77)]  ********BUT HUGE TENSION*******

 

§        From this exercise it was however realised that there would exist a combination of belt slack &pretention between the pelvic restraints &shoulder straps that would result in an acceptable spinal loading scenario between the extreme tension &compression cases :

In the 3rd restraint concept in Figure 4.24, (f77)… “

 

“(Test 2, frontal impact) The lumbar spine load &head acceleration results for the three prone concepts are contained in Figure E4 &E5…” (f 136). 

[Figure E4  :  Prone concept 3,  +7000N extension (green curve) –5000N compression]

(Figure E4 :  Prone concept 1, only compression, blue curve. Prone concept 2, huge tension, red curve)

 

__(f85)  “Conclusion :    Although compression of he spine in the conventional pilot position can be limited by following  the recommended shoulder harness &safety belt installations, it will always be present due to the resultant force caused by the angle of the shoulder straps & the seat structure below the pilot”. [cf. JAR 23 562 spec.  (f123-124)]

__(f94)  “Conclusion :  …In comparison with the normal seated &supine seated positions a pilot in the prone position would be exposed to much lower spinal compression forces due to the orientation of the body with respect to a crash load with both vertical &horizontal components… The results of the different prone concepts indicated that spinal compression during frontal impact case could be limited if adequate pelvic restraint was provided. On the contrary, if the pelvis was restrained adequately but not with sufficient upper body restraint a huge tension force was induced in the spine. When analysing the final prone support-restraint proposal, it was however discovered that a good balance between the two restraint systems could result in acceptable spinal loads.”

__(f95)  “…dynamic overshoot of the head …in the prone position was limited by the inclusion of a chin rest…” [justify our airbag collar in conventional position]

“Connecting the helmet to the existing harness system of the prone positioned pilot will go a long way to alleviate these problems without restricting the head’ freedom of movement…

A similar system called Head and Neck Support HANS in Formula 1 racing :

… helmet is loosely connected to yoke through several tethers ensuring free movement of the head. The yoke is on its turn fixed to the torso by belts thus providing helmet restraint relative to the torso.

According to Wright (2000) frontal impact tests with a Hybrid III ATD wearing the HANS system produced similar results as that with an airbag system.”

__(f96)  “…best results were obtained with restraint concept 3…” (test 2 with frontal impact)

__(f116)   Compression of the spinal column by… shoulder harnesses should be avoided.”

“The resultant restraint force shown in Figure B13 will place the spinal column under compression, which will add to the stress on the vertebrae due to the vertical deceleration in an accident.” [See (e77) at # IV below]

__(g16-f°4)  "…7 ligaments entre 2 vertèbres dont le rôle est uniquement de résister au forces de tractions [tension/étirement de la colonne]."  [ne s’opposent pas aux forces de compression]

 

__(g19-f°8)   “Nucleus pulposus  : …Son liquide constamment sous pression absorbe et répartit les charges et les chocs… doté d’un métabolisme actif, assurant un renouvellement des protéoglycanes et du collagène… essentiellement de type II… La matrice extra cellulaire du nucleus est biochimiquement équivalente à celle du cartilage… avec des fibres de collagène entremêlées à de large molécules de protéoglycanes (80% d’eau chez l’adulte de 20ans)." 

__(g20-f°9)  Figure 3 :  "Orientées à +/-30°, les fibres de collagènes (type I) de l’annulus fibrosus entourent le nucleus pulposus (aquaphile, 2 fois moins de collagène) [view figure 4 (g22-f°11)] en lamelles concentriques où l’orientation du collagène s’inverse entre chacune d’elles."

Annulus fibrosus

 

Nucleus pulposus

                       

 

[Cette orientation, à mi chemin entre l’horizontale et la verticale, favorise la résistance de la colonne en tension/étirement (axe longitudinal/vertical et aidée en cela par les ligaments), et aussi celle du disque en tension circulaire d’évasement (axe transversal/horizontal) quand la colonne est en compression]

"L’annulus externe est lié aux vertèbres par les fibres de Sharpey tandis que l’interne l’est par les plateaux cartilagineux."

__(g23-24, f° 12-13)   "Comportement mécanique :  Le nucleus transmet les charges compressives à l’annulus sous forme de contraintes radiales ou tangentielles. En position debout… DIV… contraintes compressives… transmission radiale de la charge, le nucleus et l’annulus interne subissent une compression, tandis que les fibres de l’annulus externe se trouvent en tension. Le disque augmente son rayon de 0.75mm pour une force de compression de 1000N. Sous une compression prolongée, le nucléus peut perdre jusqu’à 20% d’eau. Inversement lorsque la charge est réduite, le disque réabsorbe le liquide pour atteindre un nouvel équilibre osmotique… processus menant au comportement viscoélastique… concerne les matériaux biphasiques se comportant comme un fluide visqueux et un solide élastique.

>> Le fluage, ou phénomène de déformation croissante lorsqu’une contrainte constante est appliquée

>> La relaxation des contraintes, ou phénomène de diminution des contraintes lorsqu’une déformation constante est appliquée.

Le fluage sous charge compressive s’explique par l’exsudation du fluide qui a lieu en réponse au dépassement de la pression nucléaire admissible. Si l’on applique au disque une contrainte constante, la déformation augmente progressivement tant que le fluide continue à s’écouler. Lorsque l’ensemble collagène-proteoglicanes est parvenu à équilibrer la charge externe, l’exsudation tend à devenir constante.

L’origine de la relaxation de contraintes provient également de l’exsudation de fluide.

Durant l’application d’un déplacement à une certaine vitesse, une augmentation de la contrainte interne est générée par l’exsudation forcée du fluide interstitiel et la compression de la matrice solide aux environs de la surface. Lorsque le déplacement est maintenu, la relaxation de la contrainte est en retour engendrée par la redistribution progressive du fluide dans la matrice."

__(g24-25, f°13-14) "Dégénérescence du disque intervertébral : La pathologie du disque intervertébral est un problème épidémiologique majeur. Mécanismes responsables… problèmes de nutrition du nucléus… mutations de protéines … accumulations de produits dégradés dans la matrice… fracture par fatigue de la matrice fibreuse… nombre d’artère (vascularisation) diminue… plateaux cartilagineux se calcifient, perdant leur porosité…"

__(g34-35, f°23-24)  "Les disques dégénérés se caractérisent par une réponse en déplacement plus grande que les disques sains : le nucleus perd en incompressibilité et le réseau fibreux de l’annulus est endommagé.

TRADUCTION PARTIELLE

__(g153-f°142) “Finally, disc degeneration effects on creep properties have been demonstrated, notably stating higher creep rates for more degenerated IVDs (Kazarian, 1975; Keller, et al., 1987; Li, et al., 1995).

 

Hirsh et Nachemson… ont été les premiers à déterminer que la dissection des arcs postérieurs avait peu d’influence sur le comportement en compression…

Le fluage… se traduit par la diminution de la hauteur du disque au cours du temps sous l’application d’une charge compressive constante… traduit la dualité de la composition tissulaire, à savoir la présence d’un liquide visqueux et d’un solide élastique. En rhéologie, le premier peut être assimilé à un amortisseur et le second à un ressort. L’association en série ou en parallèle de 2 ou plusieurs de ces deux unités complémentaires peut parvenir à traduire la réponse viscoélastique…

TRADUCTION PARTIELLE

__(g152, f°141) “IVD owes its viscoelastic behaviour to the combination of a liquid phase (interstitial fluid composed of water, dissolved gas and small proteins) and a solid phase (collagen fibres and proteoglycans) (Mow, et al., 1990). In rheology, the first one can be related to a dashpot, and the second to a spring. Series and/or parallel association of several of these units can succeed in render the viscoelastic response of the connective tissue.”

 

L’unité Kelvin est un modèle rhéologique à 2 éléments, avec un ressort et un amortisseur en parallèle.

  

 

Keller et al. Réalisent un fluage de 30 minutes sous un charge de 27 KG, en conservant les arcs postérieurs. Ils n’analysent que le modèle à 3 paramètres, car lui seul peut être physiquement interprété. En effet, le premier ressort E2 représente la déformation instantanée du disque sous l’application soudaine de la charge ; l’unité Kelvin agit ensuite pour progressivement diminuer la hauteur discale jusqu’à un état d’équilibre., mais à vitesse décroissante (appelée taux de fluage). Keller et al… notent également, comme l’a fait Kazarian… avant eux, que le taux de fluage augmente de façon très importante (facteur 2) dans le cas de disques dégénérés : ceux-ci deviennent moins visco-élastiques. Le fluage (charge constante) est responsable d’une perte de hauteur globale des individus entre le matin et le soir… 18mm en moyenne pour une personne jeune… 13mm pour une personne plus âgée."

__(g47-48, f°36-37)   "Chapitre 3, Imagerie et Evaluation de la Mobilité : …Avec les multiples sollicitations qu’il doit quotidiennement subir, le DIV est progressivement soumis à des dégradations liées en partie au vieillissement, plus qu’aucun autre tissu mou du système musculo-squelettique… Ce phénomène, appelé dégénérescence discale…s’exprime au travers de modifications biochimiques principalement localisées dans le nucléus pulposus (baisse de la teneur en eau et en protéoglicanes) qui perd son aspect gélatineux. Ces altérations imposent au réseau de collagène de résister à des charges plus importantes, ce qui engendre des initiations de ruptures menant à des fissures radiales ou circonférentielles macroscopiques dans l’annulus fibrosus… à terme des modifications de volume et de forme, notamment une perte de hauteur. A ces endommagements intra-discaux peuvent s’associer une arthrose des facettes articulaires et la formation d’ostéophytes sur les corps vertébraux."

TRADUCTION  CI-DESSOUS  A VERIFIER

__(g144) f°133  “…better understand low back pain factor… Aging &large daily loadings progressively damage the IVD… Disc Degeneration (DD)… biomechanical changes mainly localized in the nucleus pulposus (decrease of water content &proteoglycans), which loses its gelatinous aspect. These alterations enforce the collagen network to sustain higher stress, hence initiating macroscopic radial or circumferential tears in the annulus fibrosus. Over a long period, these sequential events lead to volume &shape modifications, such as a loss of disc height. Extra discal damage (osteoarthritis, ostheophytes) can also appear… influence he mechanical properties of he functional spinal unit… (FSU…).”

 

__(g69-f°58)   "Finalement, l’effet de la dégénérescence de DIV sur ses propriétés en fluage a été mis en évidence à plusieurs reprise, faisant état notamment d’un taux de fluage plus élevé dans le cas des DD [Disk Degeneration]."

__(g83-f°72)   "D’après Mow… une charge appliquée sur le DIV donne un gradient pression, un mouvement de fluide dont une grande partie est extrudée. Le frottement oppose une résistance au passage dans la matrice solide, d’où dissipation visqueuse (chaleur), d’où une réponse fonction du temps mais réversible, d’où l’amortissement du DIV, soit la capacité à dissiper l’énergie mécanique en chaleur qui s’exprime dans les courbes d’hystérésis. La déformation élastique instantanée est le réarrangement immédiat du réseau de collagène dans la structure. Il y a corrélations entre hystérésis, déformation fluée et pourcentage de charge relaxée ; logique cohérente pour la physique."

TRADUCTION CI DESSOUS

__(g145)  “When a load is maintained on an IVD, a pressure gradient appears that initiates fluid motion (Mow, et al., 1990); a large amount of this fluid is extruded. However, resistance is opposed to the flow due to the friction forces through the solid matrix, resulting in a viscous dissipation. Since delayed, mechanical responses are therefore timedependent. Damping is the result of IVD’s ability to dissipate mechanical energy into heat, a phenomenon that is directly responsible for hysteresis. The instantaneous elastic deformation is caused by a rearrangement of collagen fibres network (Hickey and Hukins, 1980). Correlations revealed between hysteresis, creep strain and percentage of load relaxed, between creep damping and hysteresis, and independence of E2 with regard to E1 and ç hence followed logical physical coherence.”

 

__(g157)  “…The presence of tears in the collagen network influenced instantaneous deformation; Hirsch &Nachemson (1954) demonstrated that his phenomenon was more evident with a higher load (1000N).

…more dehydrated discs… had less damping capabilities than the other.”

__(g161)  “Though able to sustain high load magnitudes in various directions according to the individual posture… better understanding of the mechanisms implied in degeneration &their consequences on IDVs load-carrying performance is therefore of high clinical significance.”

__(h)  [Traction]  “Tissu cortical :  l'os compact peut être considéré comme transversalement isotrope ce qui signifie que dans le plan perpendiculaire à la direction longitudinale les propriétés sont les mêmes dans toutes les directions… Tissu discal :  les résultats de Markolf… en 1972 montrent que le disque lombaire et dorsal est plus souple en traction qu'en compression

__(i) “En effet, l’application d’une traction pendant la phase de dépériostage permet non seulement de stabiliser la colonne vertébrale pendant ce temps opératoire mais surtout d’assouplir le rachis en profitant de son comportement viscoélastique. ”

__( j ) “… la dégénérescence discale entraîne une augmentation de la charge sur les facettes articulaires, et en conséquence, une dégénérescence des facettes articulaires… Les facettes, en présence de disques sains, supportent environ 10% de la compression du poids du corps, et le complexe corps vertébral-disque-corps vertébral supporte 90% du poids. Dans le cas d’une dégénérescence discale, les facettes doivent supporter un poids de plus en plus important, pouvant aller jusqu’à 50-70% du poids total.

__(k10)  Ligne 23   “Apart from the immediate dangers of involuntary movements occurring during a high speed manoeuvre the cumulative effects of G-force on the pilot’s head &body cause pilot fatigue which also impairs pilot performance. It would therefore be to a pilot’s advantage if the effect of high G-forces could be compensated for or reduced in some way.”

__(L1) “Abstract… crewmembers are subjected to periodic high acceleration loads that cause fatigue & a decrease in operating capacity. Restraining the torso of a crew member &pulling the crew member back against the ejection seat… would help prevent such fatigue.

__(l6)  lignes 33-45  “Tactical aircraft currently being developed has increasing maneuvering capability with accompanying increasingly high acceleration loads on the crewmembers. Resisting such high accelerations or “G” force loads can cause excessive crew fatigue & a decrease in a crewmember’s peak operating capability. Therefore, there is a need to assist crewmembers in resisting the g loads experienced in high accelerations maneuvers in order to prevent excessice fatigue & loss of operating capability. Known torso restraint retraction systems do not fulfil this need because they are not adapted to respond to in flight accelerations conditions.”

D’APRES LEUR ANGLE, LES SANGLES NE PASSENT PAS SOUS ARMPITS , PAS DE TRACTION DU BUSTE NI DE SUPPORT FESSIER AMMOVIBLE

__(m5)  lignes 9-17  “…improved aircraft manoeuverability is counterproductive if the resulting forces imposed on the unprotected pilot are beyond human tolerances. One can only speculate as to the number of fighter aircraft lost as a result of pilot blackout…”

__(o) “Spinal impact associated with ejection may result in vertebral compression fractures. The most common fracture sites are T-12 and L-1, although other sites may be involved due to poor body position (Rotondo, 1975).”

“One of the most vulnerable sites for injury of the spinal column is the region around the eleventh and twelfth thoracic vertebrae (T11-T12). From the eighth thoracic to the first lumbar vertebrae is the region of greatest frequency due to the convergence of a multitude of factors. The forward bending movement during ejection is accentuated because the center of gravity of the head and torso is considerably anterior to the spinal plane (Nuttal, 1971).”

“A tight coupling between the occupant and the seat helps to keep the dynamic response and acceleration "over shoot" of the occupant within tolerable limits.”

“The ballistic powered shoulder harness inertial reel is mounted to the back of the seat with its straps connected to the parachute risers which in turn are attached through the parachute release fittings to the occupant's upper portion of the PCU torso harness… During ejection, a cartridge is fired to retract the shoulder harness which helps to position and restrain the occupant for ejection. Under some conditions, it simply tightens the harness, straining against centrifugal or inertial forces acting on the occupant's torso. The seat backrest, head rest, bucket, and sides provide passive restraint in addition to the active restraint harness described above… injuries include improper position of the body at time of ejection, varied tension of the restraint harness, inverted or negative G flight conditions at the time of ejection, improper seat and seat back cushioning, offset between body center of gravity and the upward and backward (approximately 18o from vertical) thrust line of the catapult, and through-the-canopy ejection. The 18o mentioned varies considerably from one seat to another.”

__(p896) cap 22-20   We can demonstrate a clear relationship between through-the-canopy ejection with higher peak G catapults and the incidence of vertebral fracture. We "know" that improper body position (including a loose harness) increases the risk of injury.”

__(p897) cap 22-21  “Overshoot effects can be particularly severe on internal organs, which have their own dynamic response to catapult forces. Krefft (1974) discusses the various forces and stresses imposed on the internal organs during ejection. These organs may be subject to severe deformation and tensile stresses. During ejection, the vertical acceleration forces may combine with the transverse shock from the ram air pressure. This transverse jolt against the thorax is immediately transmitted to the heart at its location at the anterior internal chest wall. Here, the shock leads to a compression where hemodynamic forces can exceed the elasticity modulus of the tissue, and ruptures may be sustained because of local overstretching. It must be pointed out, however, that these are extremely remote possibilities.”

__(q17-18) “LUNG CAPACITIES :

The Diaphragm descends under +Gz acceleration due to the increased weight of the abdominal contents &the increased weight of the diaphragm itself. As it descends, it acts like a piston in a cylinder to draw in air into he chest.

Diaphragms descends by:

1cm at +2Gz ~ 300 ml

2cm at +4Gz ~ 500 ml

Diaphragmatic descent explains the increase in FRC seen in under increased +Gz acceleration.

If, however, the subject wears an anti-G suit (which inflates above +2 Gz), the abdominal bladder of the garment splints the diaphragm, &prevents diaphragmatic descent (the diaphragm may even be elevated). Therefore there is no increase in FRC, and it may even become reduced.”

AVEC NOTRE SYST. LE DIAPHRAGME DESCEND DEPUIS PLUS HAUT => FRC AUGMENTE

__(q31-32)   “Neck Pain predisposing factors :   /High +Gz acceleration   /High +Gz sustained for long periods  /High G onset rate   /Helmet weight   /Age    /Flight hours    /Unprepared for manoeuvre.

Mechabnism of neck pain

a)  Acute in-flight pain:   /Ligamentous injury--muscle strain   /cervical disk bulge , annular tear, C3-4 (Hämäläinen 1993)     /compression fracture  (Andersen  1991)     /Fractured spinous process

/Facet joint dislocation

b)  Degenerative disease:    /Disk degeneration    /Osteophytes…

Lifetime incidence of neck pain has beeb reported in the following studies:

60% USN (Knudson 1988)    48% FAF (Hämäläinen 1993)       63.6% 1 year prevalence USAF (Vanderbeek 1988)      89.1% ‘checking 6’ in Japanese F15 (Kikukawa 1995)…

Some studies noted increased incidence with increased aircraft agility… meta-analysis has now demonstrated a high level of probability that degenerative spinal disease occurs more commonly in fighter pilots than age-matched controls.

G related neck injury may become more prevalent over the next few years. Unfortunately aircrew helmets are tending to become heavier rather than lighter, with the addition of night vision equipment, FLIR cameras &helmet mounted display systems. The centre of gravity of helmets & optics is a major determinant of neck strain.”

__(q38)   “… Gz improvement, but gives more when used in combinaison with elevated legs.”

 

 

 

IV. What loads (maximum) could support the chest & armpits (discharge & fatigue counter measure)?

 

__(a15) f°8   “Arrested fall simulating :  simulated fall, to ensure that recorded shock loadings were below the levels that were known to cause injury

__(a18) f°11  “Figure 5 showing some upper torso applied  traction.”

__(a21) f°14   “Human volunteers test”    [Dr Amphoux Chest harness : no linkage with pelvis]

“free falls with no unterward results, but two rib fractures after some 0,6m fall tests” [but without buttock supporting the lower body]

__(a26) f°19  [Same tests]     “As reported in Hearon in Brinkley (1984)… 30 drop tests… maximum arrest force of 4.8 KN, fall distance of 0.8m … 7G… volunteers wore chest harness”

[Mais ici tout le poids apparent du full body, sous 7G, est absorbé dans le upper torso  --harnais décrit en (a21) f°14. Les épaules supporteraient la même force sous 14G (soit le double =force éjection) si le pelvis est soutenu.]

__(a22-23)  f°15-16   Reader.   “Waist belt suspension.”

__(a72)  f°65  Conclusions :  Drop test conducted with human have produced tolerable deceleration of 5-12G… force equivalent of 4.9 – 13,2 kN applied in the… Z axis via parachute shoulder riser straps

__(a73-74)  f°66-67   “Feet first trajectory, fall arrest human drop tests :  

Aircraft ejection seat criteria only apply with the spinal column being kept erect…

Parachute opening criteria… feet first trajectory only, based on shoulder structure strength

__(a79) f°72   [With dummy]  interactions between components, the stretching of the safety harness & the flexing of the dummy all contribute to energy dissipation

__(a89)  f°82    Stevens G.W.H. (1968)    Ply-Tear Webbing as an Energy Absorber

__(a92)  f°85   APPENDIX  …personnel wearing abdominal belts should be subject to no more than 5g deceleration …(safe upper limit)”

[=> Epaules et surtout abdomen supportent 500kg avec colonne en extension]    

__(a94-97-101)  f°87-90-94    [Studying prevention of ejection or crash accident injuries]

APPENDIX, FREE FALL ARREST NEW BODY CONTAINMENT DEVICE”

[Fall arrest “life jacket harness” [chest upper torso harness without legs straps] preferred to waist belt & even to ejection seat harness with leg straps:  straps around the legs… would have increased the arrest load.”  Note that our collapsing buttock support advantageously replaces these legs straps.]

“A garment enveloping the whole of the upper torso. The principle configuration of the straps was as such to encircle the torso & arm holes of the lifejacket, and to provide a self-tightening feature… When a fall-generated impact force was applied via the strop which connected the harness to the aircraft, the loops of webbing around each arm hole would tighten. This would hold the lifejacket closely around the upper torso, and would offer two main advantages: …distributing the arrest load over the whole upper torso. During testing, it was noted that the tension around the chest… did not prevent breathing.”

Suspension :  Comfort when suspended was acceptable… high loads under the armpit and over the lower ribsacceptable in an emergency.”

Drop test :

>>  a free fall of 1.0m… at this drop height with other harness assemblies, the velocity…imposes… 10G on the dummy…

>>  however with the life jacket harness, a free fall of 1.14 m produced a peak arrest load of 5,6 kN, equating to a deceleration of only 5.3G

>>  free falls of 2.0 m and 3.0 m realised peak arrest loadings of 7.4 kN and 10 kN and maximum deceleration of 7G and 9.5G respectively…

…the life jacket-harness rose up over the dummy’s chest until fully arrested by the armpits straps and the self tensioning of the assembly around the chestrelative movements reduced the expected loads because the deceleration pulse time & distance were effectively increased… if the fall arrest forces were needed to be cushioned further then ‘ply-tear’ webbing could be utilised in the lifejacket-harness.”   [=tear-web material = energy absorber within lanyards]

__(a109)  f°102   “Conclusion. This findings in this appendix generally support & reinforce the conclusions in the main report (section 5) and the future research directions & recommendations for further work (section6).”

“…close correlation between body harness design, energy absorbing design and parachute opening testing practice… and that of corresponding practices within the fall arrest industry.”

__(b19) f°8   Harness suspension: review & evaluation of existing information, by Paul Seddon. Amphoux studied 5 subjects …ages of 18 & 59 during passive suspension, using a torso harness, a parachute harness, a waist belt with shoulder straps and a thoracic belt… The longest suspension time for the torso harness was 43.25 minutes. The parachute harness was tolerated for 28.17 minutes” [Full body harness => compression] “the thoracic belt for one minute… 2 subjects… using the waist belt with shoulder straps lasted one minute &3 minutes… (1982)”

__(b59) f°48   "[FALL ARREST, Amphoux 1983 Toronto Fall Protection Seminar] …The pelvis was the most favourable place for the part where the stress of the harness straps would be applied.” [but with extreme compression]However, the shoulders & thorax could endure forces of the same level… (6KN =1350 pounds)”

__(b60) f°49  “… Amphoux considered the point of attachment to the (full body) harness. He explained that whatever the place of attachment, the cervical column (i.e. the spine at the neck) would always be compressed. Tests carried out notably by the Japanese & the Americans on dead bodies had indicated that the resistance of the vertebrae to compression was less than to tension (idem P. 66, f°55)… especially true in the most fragile part… the neck…”  

See :   www.dodsbir.net/sitis/view_pdf.asp?id=96-6.PDF   Evaluation of an Energy Absorbing Truck Seat for Increased Protection from Landmine Blasts,  Alem & Strawn,  Aircrew Protection Division, USAARL MINE CENTER BLAST EA (Energy Absorber) SEATS :  

_page 17  f°14   fig 1,   neck tension force :    750 to 250 LB

_page 28  f°25   fig 12, lumbar spine forces (100HZ filter) : tension +700 LB to  -1329 compression

_page 20  f°17   fig 4,  Passenger EA seat acceleration :  tension +22.76 LB to -42.76  compression.

(b60) f°49 continuation :  “It would be better for the compression to be localised on the body of the vertebrae and not on the posterior joint, which were too fragile… Attachment point would be better on the back than pre-sternal…  1800 pounds (8KN) is considered the appropriate maximum arrest force… harnesses are to be used in arresting falls… (12 KN = 2,700 pounds threshold of significant injury incidence as for parachutists).”

__(b80) f°69    Recommendations for further work… As the majority of the body weight is usually taken by the sub-pelvic &pelvic parts of the body, both during the arrest of a fall & in suspension, research could be undertaken to examine the most ergonomic designs for leg loops/thigh/waist support straps. In addition, similar work could be undertaken for the chest &shoulder sections of full body harnesses, as these also play a part in taking some of the load in a fall & in providing support after the fall.

__(c20)  f°13     “center gravity of the trunk is in front of the spinal column so that considerable muscular effort is required to keep he spine in ‘optimum alignment’. The muscular effort thus induces disc forces that are much higher than would be expected from the weight of trunk above the disc… lumbar spine… intervertebral discs in this region of the spine are 3 times stronger than the vertebrae… the apparent strengh of the lumbar spine at these accelerations is the support given by the surrounding muscular wall and other body tissue.”

[So as a fatigue counter-measure, tension may alleviate this posture effort & in profit of the straining manoeuvers]

__(d94-102)   f°85-93   “CAGGED LADDER TESTS 5 & 6  

[without sliding arrest device, ATDummy is free here]

 

[: freiné par le contact du dos et arrêt par 1 armpit supporte l’ATD étiré aussi par une jambe en l’air.

 

è TENSION  NO INJURY]

[: arrêt par les armpits mais accéléromètre inopérant 2G estimés.

 

è TENSION

NO INJURY]

5                                   6  

 

 

__(d164)   f°155   [Suspension à 1 (ou 2) armpit dans l’accélération finale] 

“tests 5, 6… no spinal injury… tests 5, 6 :  Injury would probably been limited to the armpits & arms…”   [But would certainly not, with adequate chest harness arrest fall and without the weight of the lower body.  Test 6 :  vertebraes support  +4,18 G  headwards  in tension]                   

__(d197)   f°188   [fig. 103  test 6   z axis amplitude : +4,18G  to  -4,58G . Au moins 3 fois, in the time trace]

__(e54) ”Mine blast... human neck criteria with axial compression loading : 4912 N (at 0 ms)...

human neck criteria with axial tension loading : 4052 N (at 0 ms)”

__(e56)  Table 6 : “Other than the specific z-axis (vertical) requirement, the injury criteria can also provide guidance in standard crash impact testing orientations

Recommended Injury Criteria for Landmine testing:

Dummy lumbar spine axial compression force  6673 N  (0 ms)

Dummy lumbar spine axial tension force         12700 N  (0 ms)”

To confirm the ratio in Amphoux reports from studies on cadavers. See upper (b60-f°49) & below (f28)

__(e76) Restraint system:  “pre-load  of 100-lbs. Applied”

Comfort: “Occupant discomfort may induce fatigue that can contribute to and cause crash

__(e77)  Figure 37  Adverse Loading Effects of Shoulder Straps Loads

“…shoulder straps at an angle below the horizontal adds additional compressive force to the occupant’s spine.” (So even in the [-5,0]° range)

__(e93) “hazards associated with the operational environment of military wheeled-ground vehicle also place a vertical (z-axis) response requirement on the vehicle’s occupant protection system. Occupant inertial response to mine blast forces and rough terrain maneuvers [Fatigue] requires that the energy associated with these hazards be managed to preclude spinal injuries.” [Also mentioned in #II]

__(e95)  “The most predominant impact direction for a helicopter occupant is vertical (i.e., eyeballs downward). A shoulder harness increases human tolerance without injury for the vertical direction from 4-G’s to 25-G’s, an improvement factor of six. A shoulder harness occupant survivability in the vertical impact scenario because it retains the occupant’s pre-crash position (i.e., upper torso remains essentially upright), keeping the spinal column aligned properly and allowing it to carry much higher crash loads… Laterally, the shoulder harness increases tolerance by a factor of two.” [more tolerance improvements can be expected with our method by a new factor, because of reduced compression]. Already mentioned in #I. See also (f34).

__(f28) “Neck injury tolerance values :       Axial compression (-Fe)    -4000N    

                                                Axial tension (+Fz)          3300N      [See higher, (e56)]

__(f49)  “restraining methods that will not contribute to injuries during a crash. Restraints should be applied to portions of the body best able to withstand high impact forces &accelerations like the shoulders… &pelvis.” (Already mentioned at # III)

__(f56)  “…pelvic restraint in the prone position would provide the advantage of tension rather than compression loading of the lumbar spine… upper torso would displace forward during a crash.”

__(f82)  1st restraint concept” of the Prone pilot as indicated in Figure 4.22 (f76). 

“…massive spinal compression force was induced by the mass of the upper body &pelvis impacting into the shoulders straps. This led to the conclusion that sufficient pelvic restraint was vital to avoid high compression loads to the spine in a frontal impact scenario.”

ET A CONCLUSION QUE CECI EST TRANSPOSABLE, A L’IMPACT VERTICAL, AU SOULAGEMENT DE LA COMPRESSION LOMBAIRE SOUS LE POIDS DU BUSTE, EN MODE ASSIS NORMAL.

__(g34-35, f°23-24) [Charge on the facets]  "Les disques dégénérés se caractérisent par une réponse en déplacement plus grande que les disques sains : le nucleus perd en incompressibilité et le réseau fibreux de l’annulus est endommagé.

TRADUCTION PARTIELLE

__(g153-f°142) “Finally, disc degeneration effects on creep properties have been demonstrated, notably stating higher creep rates for more degenerated IVDs (Kazarian, 1975; Keller, et al., 1987; Li, et al., 1995).

 

Hirsh et Nachemson… ont été les premiers à déterminer que la dissection des arcs postérieurs avait peu d’influence sur le comportement en compression…

Keller et al… notent également, comme l’a fait Kazarian… avant eux, que le taux de fluage augmente de façon très importante (facteur 2) dans le cas de disques dégénérés : ceux-ci deviennent moins visco-élastiques. Le fluage (charge constante) est responsable d’une perte de hauteur globale des individus entre le matin et le soir… 18mm en moyenne pour une personne jeune… 13mm pour une personne plus âgée."

__(g47-48, f°36-37)   "Chapitre 3, Imagerie et Evaluation de la Mobilité : …Avec les multiples sollicitations qu’il doit quotidiennement subir, le DIV est progressivement soumis à des dégradations liées en partie au vieillissement, plus qu’aucun autre tissu mou du système musculo-squelettique… Ce phénomène, appelé dégénérescence discale…s’exprime au travers de modifications biochimiques principalement localisées dans le nucléus pulposus (baisse de la teneur en eau et en protéoglicanes) qui perd son aspect gélatineux. Ces altérations imposent au réseau de collagène de résister à des charges plus importantes, ce qui engendre des initiations de ruptures menant à des fissures radiales ou circonférentielles macroscopiques dans l’annulus fibrosus… à terme des modifications de volume et de forme, notamment une perte de hauteur. A ces endommagements intra-discaux peuvent s’associer une arthrose des facettes articulaires et la formation d’ostéophytes sur les corps vertébraux."

TRADUCTION  CI-DESSOUS  VERIFIER

__(g144) f°133  “…better understand low back pain factor… Aging &large daily loadings progressively damage the IVD… Disc Degeneration (DD)… biomechanical changes mainly localized in the nucleus pulposus (decrease of water content &proteoglycans), which loses its gelatinous aspect. These alterations enforce the collagen network to sustain higher stress, hence initiating macroscopic radial or circumferential tears in the annulus fibrosus. Over a long period, these sequential events lead to volume &shape modifications, such as a loss of disc height. Extra discal damage (osteoarthritis, ostheophytes) can also appear… influence the mechanical properties of the functional spinal unit… (FSU…).”

 

__(g69-f°58)   "Finalement, l’effet de la dégénérescence de DIV sur ses propriétés en fluage a été mis en évidence à plusieurs reprise, faisant état notamment d’un taux de fluage plus élevé dans le cas des DD [Disk Degeneration]."

__(g157) “…The presence of tears in the collagen network influenced instantaneous deformation; Hirsch &Nachemson (1954) demonstrated that his phenomenon was more evident with a higher load (1000N).

…more dehydrated discs… had less damping capabilities than the other.”

__(g161)  “Though able to sustain high load magnitudes in various directions according to the individual posture… better understanding of the mechanisms implied in degeneration &their consequences on IDVs load-carrying performance is therefore of high clinical significance.”

__(k10)  Ligne 23   “Apart from the immediate dangers of involuntary movements occurring during a high speed manoeuvre the cumulative effects of G-force on the pilot’s head &body cause pilot fatigue which also impairs pilot performance. It would therefore be to a pilot’s advantage if the effect of high G-forces could be compensated for or reduced in some way.”

__(L1) “Abstract… crewmembers are subjected to periodic high acceleration loads that cause fatigue & a decrease in operating capacity. Restraining the torso of a crew member &pulling the crew member back against the ejection seat… would help prevent such fatigue.

__(l6)  lignes 33-45  “Tactical aircraft currently being developed has increasing maneuvering capability with accompanying increasingly high acceleration loads on the crewmembers. Resisting such high accelerations or “G” force loads can cause excessive crew fatigue & a decrease in a crewmember’s peak operating capability. Therefore, there is a need to assist crewmembers in resisting the g loads experienced in high accelerations maneuvers in order to prevent excessice fatigue & loss of operating capability. Known torso restraint retraction systems do not fulfil this need because they are not adapted to respond to in flight accelerations conditions.”

D’APRES LEUR ANGLE, LES SANGLES NE PASSENT PAS SOUS ARMPITS, PAS DE TRACTION DU BUSTE NI DE SUPPORT FESSIER AMMOVIBLE

__(m5)  lignes 9-17  “…improved aircraft manoeuverability is counterproductive if the resulting forces imposed on the unprotected pilot are beyond human tolerances. One can only speculate as to the number of fighter aircraft lost as a result of pilot blackout…”

__(q31-32) [Anti fatigue]  “Unfortunately aircrew helmets are tending to become heavier rather than lighter, with the addition of night vision equipment, FLIR cameras &helmet mounted display systems. The centre of gravity of helmets & optics is a major determinant of neck strain.”

__(q37-38)  [Anti fatigue]  “High +Gz associated forearm pain :

High venous pressure exists in the arms if they are in a dependant position (ie below heart level) under high +Gz acceleration. This may be up to 270 – 300 mmHg at +9Gz. These high pressures are associated with deep, poorly localised pain, which may be due to venous or arterial over-distension… Possible solutions to armpain include raising the arms (high stick &throttle) to minimise the height of the hydrostatic column, providing arm counter pressure with or without hand counter pressure, and (possibly) reducing PBG pressure.”

“… Gz improvement, but gives more when used in combination with elevated legs.”

__(t26) [Anti fatigue] “heat stress hot topic…”

 

 

 

V.   May our system be active partially at parachute opening shock?

 

 

__ Yes! only with the collar inflation device.

__(f95)  “…dynamic overshoot of the head …in the prone position was limited by the inclusion of a chin rest…” [justify our airbag collar in conventional position]

“Connecting the helmet to the existing harness system of the prone positioned pilot will go a long way to alleviate these problems without restricting the head’ freedom of movement…

__(p905/906) cap 22, 29/30  The higher the altitude for a given speed, the higher the opening shock will generally be. The higher the speed, the higher the opening shock will generally be. Asymmetrical inflation of the canopy produces high localized stresses in the canopy, premature inflation results in a larger than normal mass (i.e.,including trapped air) being accelerated at line stretch… Terminal velocity increases at altitude, with the result that parachute opening shock is generally increased to a point where damage to the parachute structure or injury to the aircrewman may result… High-speed parachute opening tests (200-300 KEAS) were conducted years ago to determine parachute system integrity and the effects of acceleration and opening shock levels with regard to human injury (Dahnke, Palmer, & Ewing, 1976). These results showed that high-speed parachute opening can produce catastrophic damage to the canopy…”

__(p906/908) cap 22, 30/32  5/25G+  Parachute range opening shock.

“Smaller canopies impart a greater G-loading during opening than do larger ones.”

__(r) “A 20G impact is not even particularly severe; parachute-opening shocks reach that level. Catapult ejection forces & the abnormal vertebral column NS Bahgwanani  volume 20 summer 1976 N°1 ”

 

 

 

 

 

VI. How retention for loading above 1G can be expected/forwarded & be positively comforted? (After Madsen p. 3, After Pretoria thesis)

 

 

__(a80)  f°73  “Thresholds could also be based on areas of the body rather than blanket approaches

__(a109)  f°102   “Conclusion. This findings in this appendix generally support & reinforce the conclusions in the main report (section 5) and the future research directions & recommendations for further work (section6).”

“…close correlation between body harness design, energy absorbing design and parachute opening testing practice… and that of corresponding practices within the fall arrest industry.”

__(b19) f°8   Harness suspension: review & evaluation of existing information, by Paul Seddon. Amphoux studied 5 subjects …ages of 18 & 59 during passive suspension, using a torso harness, a parachute harness, a waist belt with shoulder straps and a thoracic belt… The longest suspension time for the torso harness was 43.25 minutes. The parachute harness was tolerated for 28.17 minutes (Full body harness => compression); the thoracic belt for one minute… 2 subjects… using the waist belt with shoulder straps lasted one minute &3 minutes… (1982)

__(b30-32) f°21-23     “TILT TABLE & DOUBLE –STROP SUSPENSION TESTS,  [P Madsen et al. 1996/97, Aviation, Space &Environment Medecine, 1998]. Although low blood pressure caused by being in a vertical plane &not moving is usually not a problem, some patients faint (which can lead to death)…

Test 2 :  …subject to be suspended in a double padded strop arrangement. One strop was placed around the thorax & connected to a rope, and the other strop was passed under the legs just behind the knees &connected to the rope in the same place as the first strop. On lifting the subject into a suspended position, a sitting position was assumed, so that the upper part of the legs was roughly just above horizontal:

Figure 2 :  Suspension with a double-strop device (after Madsen). Thorax is upright & venous return is secured by elevation of the legs… subjects remained suspended without moving for one hour or until pre-syncopal symptoms or signs appeared… only the female subject …was taken down after 50 minutes.

This subject also took part in the head-up tilt tests where she experienced pre-syncopal symptoms after only 5 minutes. (See “Tilt Table”)Leg elevation prevented vasovagal reactions in 8 out of 9 subjects… a much lower risk of pre-syncope than during the head-up tilt test (1).

__Sous 1G  c’est le mode de suspension le plus durable (1 heure+) sans blessures. See syncope phenomenon in “Horizontal Tilt Table” (Capter title).

Il se rapproche de notre system de “fatigue counter measure” lors de son initialisation : notre support s’affaissant les genoux sont plus haut que le pelvis + traction aux épaules. Alors que tous les autres (full-body, chest harnesses, waist belts…) sont dangereux beaucoup plus vite :  Le full body ne tire pas sous les bras et les jambes pendent. Le waist belt + sit harness n’élève pas les genoux. Le chest harness occasionne du venous pooling dans les jambes qui pendent.

 

__Sous forts “G ” nos sangles dépaules soulagent la sitting posture, mieux que sans traction. Les genoux sont plus au dessus du bassin qui s’enfonce dans le support ammovible :  « venous return is secured » => flux au cerveau maintenu + longtemps   =>   G-LOC  retardé

 

 

 

 

 

__(b43) f° 32    “If the legs & arms aren’t moving, there is no pumping action, & blood tends to stagnate in the arms &legs… there is less blood return to the heart… to the head… what leads to the faintness.” (pre-syncope =pre-LOC)   

__(b51)  f°40   interest of ‘muscle pumping’ … legs in a substantially horizontal position or with the knees elevated (note 35).”

Our system adds more movement liberties to the pelvis-legs & chest-arms regions.

__(b80) f°69    Recommendations for further work… As the majority of the body weight is usually taken by the sub-pelvic &pelvic parts of the body, both during the arrest of a fall & in suspension, research could be undertaken to examine the most ergonomic designs for leg loops/thigh/waist support straps. In addition, similar work could be undertaken for the chest &shoulder sections of full body harnesses, as these also play a part in taking some of the load in a fall & in providing support after the fall.

__(f56)  “…pelvic restraint in the prone position would provide the advantage of tension rather than compression loading of the lumbar spine… upper torso would displace forward during a crash.”

__(f82)  1st restraint concept” of the Prone pilot as indicated in Figure 4.22 (f76). 

“…massive spinal compression force was induced by the mass of the upper body &pelvis impacting into the shoulders straps. This led to the conclusion that sufficient pelvic restraint was vital to avoid high compression loads to the spine in a frontal impact scenario.”

ET A CONCLUSION QUE CECI EST TRANSPOSABLE, A L’IMPACT VERTICAL, AU SOULAGEMENT DE LA COMPRESSION LOMBAIRE SOUS LE POIDS DU BUSTE, EN MODE ASSIS NORMAL

__(f82)  From this exercise it was however realised that there would exist a combination of belt slack &pretention between the pelvic restraints &shoulder straps that would result in an acceptable spinal loading scenario between the extreme tension &compression cases : In the 3rd restraint concept in Figure 4.24, (f77)… (Test 2, frontal impact) The lumbar spine load &head acceleration results for the three prone concepts are contained in Figure E4 &E5…” (f 136). 

[Figure E4  :  Prone concept 3,  +7000N extension (green curve) –5000N compression]

__(f85)  “Conclusion :   Although compression of he spine in the conventional pilot position can be limited by following  the recommended shoulder harness &safety belt installations, it will always be present due to the resultant force caused by the angle of the shoulder straps & the seat structure below the pilot”. [cf. JAR 23 562 spec.  (f123-124)]

__(f94)  “Conclusion :  …In comparison with the normal seated &supine seated positions a pilot in the prone position would be exposed to much lower spinal compression forces due to the orientation of the body with respect to a crash load with both vertical &horizontal components… The results of the different prone concepts indicated that spinal compression during frontal impact case could be limited if adequate pelvic restraint was provided. On the contrary, if the pelvis was restrained adequately but not with sufficient upper body restraint a huge tension force was induced in the spine. When analysing the final prone support-restraint proposal, it was however discovered that a good balance between the two restraint systems could result in acceptable spinal loads.”

__(f96)  “…best results were obtained with restraint concept 3…” (test 2 with frontal impact)

 

 

VII.      If one can really want it, can engineering be found/developed to permit additional space at the buttock rotation

 

__ Solution could be Longer & deeper seat base, possibly fixed below the floor. The McDonnell F4H Phantom 2 ejector seat had an movable buttock permitting access to systems under the floor without removing the seat (v192-193) ; space could be found or managed.

__(f50) “provide energy absorbing mechanisms &materials in the structural design that would attenuate crash forces…”

 

 

 

VIII.    In what particular phase (how) can the system act during the push-pull effect?

 

__ See ABSRACT, 2.3) frame VIII.

 

 

 

IX. Is the head of tall pilot so much higher that our retention can’t be placed for their shoulders?

 

__ See ABSTRACT, 2.3) frame IX :  Our pilot isn’t higher, more, buttock collapses.

 

 

 

IX bis.  Might dynamic overshoot be reduced at catapult ignition?

 

__ See ABSTRACT, 2.1) frame IX bis. Of course it is agreed!

__ With our device, earlier participation during vertical impact, & less dynamic overshoot

 

 

      

X.   Could our design/system be complementary and act together with the current one?

     

__ See ABSTRACT, 2.3) frame X

__ It could be explored a vertically back rest movable, to annihilate the traction friction when the current device would act horizontally.

 

 

 

XI. Is a blanket approach, from a white paper constructive? (Also see question VI, last terms)

 

__(a80)  f°73  “Thresholds could also be based on areas of the body rather than blanket approaches

 

__(q1)  “Ut Secure Volent”    [Tronc Ailé en suspension du blason 2005 de : RAF Centre of Aviation Medecine]

 

__(q38) “Future G protection:   In order to extend much beyond +9 to +12 Gz for prolonged periods, alternative strategies are required.”

 

__(u10) “…the occurrence of soft and hard tissue injury during every day flight has become a greater and greater operational problem. There have been a several reports by Australia, Belgium, China, Finland, Sweden, and USA over the past ten years or so which have documented the increased incidence of injury, typically associated with exposures of +4 Gz and above. So, the problem exists - but the data to correct the problem does not. There are a variety of unanswered questions of interest to our Workshop…”

“Chairman’s Note : This is an important topic for us as a research community to address. It goes to the very heart of issues surrounding the protection and long-term health and safety of pilots flying high performance aircraft. I would like to thank Barry for submitting this topic, and urge all participants to carefully consider the issues involved and the questions that Barry has raised. I hope that this topic provokes a lively and constructive debate, and provides the impetus for many ongoing collaborative research efforts.” Idem in ABSTRACT 2.4) frame XI.

 

HOME